SAI indexing with collections
SAI supports collections of type map
, list
, and set
.
Collections allow you to group and store data together in a column.
In a relational database, a grouping such as a user’s multiple email addresses is achieved via many-to-one joined relationship between (for example) a user
table and an email
table.
Apache Cassandra avoids joins between two tables by storing the user’s email addresses in a collection column in the user
table.
Each collection specifies the data type of the data held.
A collection is appropriate if the data for collection storage is limited. If the data has unbounded growth potential, like messages sent or sensor events registered every second, do not use collections. Instead, use a table with a compound primary key where data is stored in the clustering columns.
In CQL queries of database tables with SAI indexes, the
|
Using the set type
This example uses the following table and index:
CREATE TABLE IF NOT EXISTS cycling.cyclist_career_teams (
id UUID PRIMARY KEY,
lastname text,
teams set<text>
);
CREATE INDEX teams_idx
ON cycling.cyclist_career_teams (teams)
USING 'sai';
An index is created on the set column teams
in the cyclist_career_teams
table.
Query with CONTAINS
from the set teams
column:
SELECT * FROM cycling.cyclist_career_teams
WHERE teams CONTAINS 'Rabobank-Liv Giant';
id | lastname | teams
--------------------------------------+----------+------------------------------------------------------------------------------------------------------
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | VOS | {'Nederland bloeit', 'Rabobank Women Team', 'Rabobank-Liv Giant', 'Rabobank-Liv Woman Cycling Team'}
Using the list type
This example uses the following table and index:
CREATE TABLE IF NOT EXISTS cycling.upcoming_calendar (
year int,
month int,
events list<text>,
PRIMARY KEY (year, month)
);
CREATE INDEX events_idx
ON cycling.upcoming_calendar (events)
USING 'sai';
An index is created on the list column events
in the upcoming_calendar
table.
Query with CONTAINS
from the list events
column:
SELECT * FROM cycling.upcoming_calendar
WHERE events CONTAINS 'Criterium du Dauphine';
year | month | events
------+-------+-----------------------------------------------
2015 | 6 | ['Criterium du Dauphine', 'Tour de Sui\nsse']
A slightly more complex query selects rows that either contain a particular event or have a particular month date:
Using the map type
This example uses the following table and indexes:
CREATE TABLE IF NOT EXISTS cycling.cyclist_teams (
id uuid PRIMARY KEY,
firstname text,
lastname text,
teams map<int, text>
);
CREATE INDEX IF NOT EXISTS team_year_keys_idx
ON cycling.cyclist_teams ( KEYS (teams) );
CREATE INDEX IF NOT EXISTS team_year_entries_idx
ON cycling.cyclist_teams ( ENTRIES (teams) );
CREATE INDEX IF NOT EXISTS team_year_values_idx
ON cycling.cyclist_teams ( VALUES (teams) );
Indexes created on the map column teams
in the cyclist_career_teams
table target the keys, values, and full entries of the column data.
Query with KEYS
from the map teams
column:
SELECT * FROM cyclist_teams WHERE teams CONTAINS KEY 2014;
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS | {2014: 'Rabobank-Liv Woman Cycling Team', 2015: 'Rabobank-Liv Woman Cycling Team'}
Query a value from the map teams
column, noting that only the keyword CONTAINS
is included:
SELECT * FROM cyclist_teams WHERE teams CONTAINS 'Team Garmin - Cervelo';
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
Query entries from the map teams
column, noting the difference in the WHERE
clause:
SELECT * FROM cyclist_teams
WHERE
teams[2014] = 'Boels:Dolmans Cycling Team'
AND teams[2015] = 'Boels:Dolmans Cycling Team';
id | firstname | lastname | teams
--------------------------------------+-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
cb07baad-eac8-4f65-b28a-bddc06a0de23 | Elizabeth | ARMITSTEAD | {2011: 'Team Garmin - Cervelo', 2012: 'AA Drink - Leontien.nl', 2013: 'Boels:Dolmans Cycling Team', 2014: 'Boels:Dolmans Cycling Team', 2015: 'Boels:Dolmans Cycling Team'}
This example looks for a row where two entries are present in the map teams
column.
For more information, see: