Cassandra Documentation

Version:

Working with Vector Search

Create vector keyspace

Create the keyspace you want to use for your Vector Search table. This example uses cycling as the keyspace name:

CREATE KEYSPACE IF NOT EXISTS cycling
   WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : '1' };

Use vector keyspace

Select the keyspace you want to use for your Vector Search table. This example uses cycling as the keyspace name:

USE cycling;

Create vector table

Create a new table in your keyspace, including the comments_vector column for vector. The code below creates a vector with five values:

CREATE TABLE IF NOT EXISTS cycling.comments_vs (
  record_id timeuuid,
  id uuid,
  commenter text,
  comment text,
  comment_vector VECTOR <FLOAT, 5>,
  created_at timestamp,
  PRIMARY KEY (id, created_at)
)
WITH CLUSTERING ORDER BY (created_at DESC);

Optionally, you can alter an existing table to add a vector column:

ALTER TABLE cycling.comments_vs
   ADD comment_vector VECTOR <FLOAT, 5>(1)

Create vector index

Create the custom index with Storage Attached Indexing (SAI):

CREATE INDEX IF NOT EXISTS ann_index
  ON cycling.comments_vs(comment_vector) USING 'sai';

For more about SAI, see the Storage Attached Indexing documentation.

The index can be created with options that define the similarity function:

CREATE INDEX IF NOT EXISTS ann_index
    ON vsearch.com(item_vector) USING 'sai'
WITH OPTIONS = { 'similarity_function': 'DOT_PRODUCT' };

Valid values for the similarity_function are DOT_PRODUCT, COSINE, or EUCLIDEAN.

Load vector data into your database

Insert data into the table using the new type:

INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      e7ae5cf3-d358-4d99-b900-85902fda9bb0,
      '2017-02-14 12:43:20-0800',
      'Raining too hard should have postponed',
      'Alex',
      [0.45, 0.09, 0.01, 0.2, 0.11]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      e7ae5cf3-d358-4d99-b900-85902fda9bb0,
      '2017-03-21 13:11:09.999-0800',
      'Second rest stop was out of water',
      'Alex',
      [0.99, 0.5, 0.99, 0.1, 0.34]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      e7ae5cf3-d358-4d99-b900-85902fda9bb0,
      '2017-04-01 06:33:02.16-0800',
      'LATE RIDERS SHOULD NOT DELAY THE START',
      'Alex',
      [0.9, 0.54, 0.12, 0.1, 0.95]
);

INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      c7fceba0-c141-4207-9494-a29f9809de6f,
      totimestamp(now()),
      'The gift certificate for winning was the best',
      'Amy',
      [0.13, 0.8, 0.35, 0.17, 0.03]
);

INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      c7fceba0-c141-4207-9494-a29f9809de6f,
      '2017-02-17 12:43:20.234+0400',
      'Glad you ran the race in the rain',
      'Amy',
      [0.3, 0.34, 0.2, 0.78, 0.25]
);

INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      c7fceba0-c141-4207-9494-a29f9809de6f,
      '2017-03-22 5:16:59.001+0400',
      'Great snacks at all reststops',
      'Amy',
      [0.1, 0.4, 0.1, 0.52, 0.09]
);
INSERT INTO cycling.comments_vs (record_id, id, created_at, comment, commenter, comment_vector)
   VALUES (
      now(),
      c7fceba0-c141-4207-9494-a29f9809de6f,
      '2017-04-01 17:43:08.030+0400',
      'Last climb was a killer',
      'Amy',
      [0.3, 0.75, 0.2, 0.2, 0.5]
);

Query vector data with CQL

To query data using Vector Search, use a SELECT query:

SELECT * FROM cycling.comments_vs
    ORDER BY comment_vector ANN OF [0.15, 0.1, 0.1, 0.35, 0.55]
    LIMIT 3;

To obtain the similarity calculation of the best scoring node closest to the query data as part of the results, use a SELECT query:

SELECT comment, similarity_cosine(comment_vector, [0.2, 0.15, 0.3, 0.2, 0.05])
    FROM cycling.comments_vs
    ORDER BY comment_vector ANN OF [0.1, 0.15, 0.3, 0.12, 0.05]
    LIMIT 1;

The supported functions for this type of query are:

  • similarity_dot_product

  • similarity_cosine

  • similarity_euclidean

with the parameters of (<vector_column>, <embedding_value>). Both parameters represent vectors.

  • The limit must be 1,000 or fewer.

  • Vector Search utilizes Approximate Nearest Neighbor (ANN) that in most cases yields results almost as good as the exact match. The scaling is superior to Exact Nearest Neighbor (KNN).

  • Least-similar searches are not supported.

  • Vector Search works optimally on tables with no overwrites or deletions of the item_vector column. For an item_vector column with changes, expect slower search results.